Melatonin Prevents Myeloperoxidase Heme Destruction and the Generation of Free Iron Mediated by Self-Generated Hypochlorous Acid
نویسندگان
چکیده
Myeloperoxidase (MPO) generated hypochlorous acid (HOCl) formed during catalysis is able to destroy the MPO heme moiety through a feedback mechanism, resulting in the accumulation of free iron. Here we show that the presence of melatonin (MLT) can prevent HOCl-mediated MPO heme destruction using a combination of UV-visible photometry, hydrogen peroxide (H2O2)-specific electrode, and ferrozine assay techniques. High performance liquid chromatography (HPLC) analysis showed that MPO heme protection was at the expense of MLT oxidation. The full protection of the MPO heme requires the presence of a 1:2 MLT to H2O2 ratio. Melatonin prevents HOCl-mediated MPO heme destruction through multiple pathways. These include competition with chloride, the natural co-substrate; switching the MPO activity from a two electron oxidation to a one electron pathway causing the buildup of the inactive Compound II, and its subsequent decay to MPO-Fe(III) instead of generating HOCl; binding to MPO above the heme iron, thereby preventing the access of H2O2 to the catalytic site of the enzyme; and direct scavenging of HOCl. Collectively, in addition to acting as an antioxidant and MPO inhibitor, MLT can exert its protective effect by preventing the release of free iron mediated by self-generated HOCl. Our work may establish a direct mechanistic link by which MLT exerts its antioxidant protective effect in chronic inflammatory diseases with MPO elevation.
منابع مشابه
Myeloperoxidase-derived hypochlorous acid antagonizes the oxidative stress-mediated activation of iron regulatory protein 1.
Hypochlorous acid (HOCl) is a highly reactive product generated by the myeloperoxidase reaction during the oxidative burst of activated neutrophils, which is implicated in many bactericidal and cytotoxic responses. Recent evidence suggests that HOCl may also play a role in the modulation of redox sensitive signaling pathways. The short half-life of HOCl and the requirement for a continuous pres...
متن کاملTABLE I Endothelial Cell Destruction by PMA - stimulated Neutrophils Percent cytotoxicity * Additive Suspensions Monolayer
A B S T R A C T Human neutrophils stimulated with phorbol myristate acetate were able to destroy suspensions or monolayers of cultured human endothelial cells. Neutrophil-mediated cytotoxicity was related to phorbol myristate acetate concentration, time of incubation and neutrophil number. Cytolysis was prevented by the addition of catalase, while superoxide dismutase had no effect on cytotoxic...
متن کاملHypochlorous Acid-Induced Heme Degradation from Lactoperoxidase as a Novel Mechanism of Free Iron Release and Tissue Injury in Inflammatory Diseases
Lactoperoxidase (LPO) is the major consumer of hydrogen peroxide (H(2)O(2)) in the airways through its ability to oxidize thiocyanate (SCN(-)) to produce hypothiocyanous acid, an antimicrobial agent. In nasal inflammatory diseases, such as cystic fibrosis, both LPO and myeloperoxidase (MPO), another mammalian peroxidase secreted by neutrophils, are known to co-localize. The aim of this study wa...
متن کاملMechanism of inactivation of myeloperoxidase by 4-aminobenzoic acid hydrazide.
Hypochlorous acid is the most powerful oxidant generated by neutrophils and is likely to contribute to the damage mediated by these inflammatory cells. The haem enzyme myeloperoxidase catalyses its production from hydrogen peroxide and chloride. 4-Aminobenzoic acid hydrazide (ABAH) is a potent inhibitor of hypochlorous acid production. In this investigation we show that, in the presence of hydr...
متن کاملThe Impact of Myeloperoxidase and Activated Macrophages on Metaphase II Mouse Oocyte Quality
Myeloperoxidase (MPO), an abundant heme-containing enzyme present in neutrophils, monocytes, and macrophages, is produced in high levels during inflammation, and associated with poor reproductive outcomes. MPO is known to generate hypochlorous acid (HOCl), a damaging reactive oxygen species (ROS) utilizing hydrogen peroxide (H2O2) and chloride (Cl-). Here we investigate the effect of activated ...
متن کامل